AT

Karlsruhe Institute of Technology

Microkernel Construction
1.5 — IPC Implementation

Lecture Summer Term 2017
Wednesday 15:45-17:15 R 131, 50.34 (INFO)

Jens Kehne | Marius Hillenbrand
Operating Systems Group, Department of Computer Science

e o

KIT — University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Microkernel Based Systems: The Challenge ﬂ(".

Hardware

2 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

General IPC Algorithm _\ﬂ(IT

@ Validate parameters

@ Locate target thread
® Return error if unavailable

® Transfer message
® Untyped items (short IPC)
B Typed items (long IPC)

® Schedule target thread
® Switch address space as necessary

® Wait for IPC (reply/next request)

3 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

AT

Karlsruhe Institute of Technology

IPC IMPLEMENTATION

Short IPC

4 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Short IPC (uniprocessor) _\ﬂ(IT

W System-call pre (disable IRQs)

W Identify dest thread and check
® Same chief / no IPC redirection?
® Ready-to-receive?

a Analyze message and transfer
® Short IPC =» no action required

W Switch to dest thread & address space
B System-call post

5 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Short IPC i
o :"” (uniprocessor) ﬂ(".

B System-call pre (disable IRQs)

B [dentify dest thread and check

B Same chief / no IPC redirection?
B Ready-to-receive?

® Analyze message and transfer

B Short IPC = no action required

B Switch to dest thread & address space !
_ B System-call post

6 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Short IPC (uniprocessor)
“send” (eagerly) ﬁ(".

B System-call pre (disable IRQs)

B [dentify dest thread and check

B Same chief / no IPC redirection?
B Ready-to-receive?

® Analyze message and transfer

B Short IPC = no action required

B Switch to dest thread & address space !
_ B System-call post

7 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Short IPC (uniprocessor)
“send” (lazily) ﬂ(".

B System-call pre (disable IRQs)

B [dentify dest thread and check

B Same chief / no IPC redirection?
B Ready-to-receive?

® Analyze message and transfer

B Short IPC = no action required
B Switch to dest thread & address space

B System-call post

8 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

e Short IPC IT

%ESPO

Kernel
memory

9 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

shortipc ~ KIT

Karlsruhe Institute of Technology

10 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Short IPC SIT

Karlsruhe Institute of Technology

11 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Short IPC SIT

Karlsruhe Institute of Technology

12 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

S h o rt I P C Karlsruhe Institute of Technology
1
13 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Karlsruhe Institute of Technology
Short IPC
I
EFLAGS
14 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

IPC via sysenter/sysexit _\Q(IT

® Real register use

B EAX: dest. TID - sender TID
ECX: timeouts — user IP (sysexit)
EDX: receive TID — user SP (sysexit)
EBX: (scratch) -> MR,
EBP: (scratch) - MR,
ESI: MR, [only unchanged register]
EDI: UTCB(sender) - UTCB(receiver)

15 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Implementation Goal _\ﬂ("'

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

B Most frequent kernel op: Short IPC
® Thousands of invocations per second

® Performance is critical
® Structure IPC for speed
W Structure entire kernel to support fast IPC

® What is affecting performance?
® Cache line misses
® TLB misses
® Memory references
B Pipe stalls and flushes
® Instruction scheduling

16 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Fast Path

® Optimize for common cases
® Write in assembler

® Non-critical paths written in C++
® But still fast as possible

® Avoid high-level language overhead
® Function call state preservation
® Incompatible code optimizations

® We want every cycle possible!
B At least sometimes ...

17 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017

AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Operating Systems Group

Department of Computer Science

IPC Requirements for Fast Path _\ﬂ(IT

® Untyped message

B Single runnable thread after IPC

® Must be valid call-like IPC

® Send phase
W Target is already waiting

B Receive phase
W Sender is not ready to couple, causing us to block

® Switch threads, originator blocks

B Infinite receive timeout
B Send timeout can be ignored: receiver is waiting
® Xfer timeouts do not apply for untyped messages

18 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Memory is “Forbidden”

® Memory references are slow

® Avoid in common case
W E.g., (xfer) timeouts

® Avoid in IPC
® E.g., use lazy scheduling

19 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017

AT

ttttttttttttttttttt f Technology

Operating Systems Group

Department of Computer Science

TLB Problem with Eager Scheduling ﬂ(".

Karlsruhe Institute of Technology

virtual TCB
alrea
A
. virtual
addresses
20 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Lazy Scheduling ﬂ(".

Karlsruhe Institute of Technology

® Do not update the scheduling lists
B Blocked sender remains in ready list

® Check real thread state when dispatching

® May be unblocked before being
=» avoids list manipulatia

i)
® Unblockedee@iver not aed&'f\d mﬁéﬁ(gﬂ}sat
W Append to r@ﬂsﬁ!\saﬁ“%mlice

21 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Memory is “Forbidden” _\ﬂ(IT

® Memory references are slow

® Avoid in common case
W E.g., (xfer) timeouts

® Avoid in IPC
® E.g., use lazy scheduling

® Microkernel should minimize artifacts

® Cache pollution
® TLB pollution
® Memory bus

22 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Optimized Memory

\
TCB state,
> grouped by
cache lines
_/ /
23 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017

AT

Karlsruhe Institute of Technology

Single TLB entry

Operating Systems Group

Department of Computer Science

Avoid Table Lookups ﬂ(".

thread ID

virtual TCB area

TCB= TCB area+
((thread_no >> x) &
TCB_size _mask)

24 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Branch Elimination ﬂ(".

Karlsruhe Institute of Technology

slow = ~receiver->thread_state
((timeouts * 0x400) & Oxffff)
sender->resources
receiver->resources;

if (0 !=slow)
enter_slow_path()

= Reduces branch prediction foot print
= Avoids mispredictions, stalls, and flushes
= Slightly increases latency for slow path

25 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

TCB Resources ﬂ(".

Karlsruhe Institute of Technology

® One bit per resource

® Fast path checks entire word

Resources bitfield ® If not 0, jump to resource
handlers

26 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Slow and Fast ﬂ(".

Karlsruhe Institute of Technology

IPC wait via ' IPC send via

slow path fast path
\ 4
v v
IPC send via kil |PC wait via
slow/fast path fast path
27 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Consistent State ﬂ(“.

® Cooperative thread scheduling in kernel

BTCB in consistent state for IPC wait

B IPC restores user mode context
B Avoids cycles for restoring kernel context
B Fast path can activate slow path TCB

28 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Short IPC Performance (1)

=3t}

=3}

£4a

=3t}

cHE

iza

168

146

1za

108

inter—address space IFC

T
cyczles per IPC —+—
instructions per IFC

& 1@

29 31.05.2017

za

il

message registers copied

48

=1t

Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017

e

AT

Karlsruhe Institute of Technology

IBM PowerPC 750,
500 MHz,
32 registers

Operating Systems Group

Department of Computer Science

Short IPC Performance (2) _\ﬂ(IT

450 - .
inter C path ——

inter fast path ——
intra C path ——
intra fast path —&—

AMD Opteron
1 242,

1.6 GHz, 64 bit

488 -

398

308

=]
L]
=
2]
=
o
2508
288
158
1HH 1 1 1 1 1
a 18 28 38 48 a8 68
nunber of nessage registers
30 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Short IPC: One fundamental problem... _\ﬂ(IT

Only works if sender and receiver are
on the same core!

...but nowadays, we have SMP

31 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Karlsruhe Institute of Technology

Barrelfish

® Baumann et al (ETH Zurich/Microsoft Research)
® Assume many cores (100s!)

® One kernel per core
® , Multikernel OS"

@ Shared-nothing architecture
B All communication explicit

32 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

IPC in Barrelfish ﬂ(“.

Karlsruhe Institute of Technology

@ Use cache-coherent memory

Receiver

33 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

34

IPC in Barrelfish -\“;(IT

ttttttttttttttttttt f Technology

® Payload transferred via fastest possible channel
B Ideally, message never touches memory

® Performance (dual Opteron 2220, 2.8 GHz):

Latency Throughput Icache lines Dcache lines
(cycles) (msgs/kcycle)

URPC 450 3.42 9 8

L4 IPC 424 2.36 25 13

® But: Polling wastes cycles
® Barrelfish assumes dedicated core

® False sharing can affect IPC performance

31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

AT

Karlsruhe Institute of Technology

IPC IMPLEMENTATION

Long IPC

35 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Long IPC (uniprocessor) ﬂ(IT

® System-call pre (disable IRQs)

B Identify dest thread and check
® Same chief / no IPC redirection
® Ready-to-receive?

® Analyze message and transfer

® | ong/map:

B — fransfer message —

W Switch to dest thread & address space
W System-call post

36 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Long IPC (uniprocessor) ﬂ(IT

Karlsruhe Institute of Technology

® System-call pre (disable IRQs)

B Identify dest thread and check
® Same chief / no IPC redirection
® Ready-to-receive?

® Analyze message and transfer

® | ong/map:
B | ock both part

rs
B — fransfer message —

® Unlock both partners
W Switch to dest thread & address space
W System-call post

37 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Long IPC (uniprocessor) ﬂ(IT

Karlsruhe Institute of Technology

® System-call pre (disable IRQs)

B Identify dest thread and check
® Same chief / no IPC redirection
® Ready-to-receive?

® Analyze message and transfer

® | ong/map:
B | ock both part
B Enable IRQ
B — fransfer message —
B Disable IRQs

® Unlock both partners
W Switch to dest thread & address space
W System-call post

I'S

38 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Long IPC (uniprocessor) ﬂ(IT

B | ock both partners

B Enable IRQs

B — fransfer message —
B Disable IRQs

® Unlock both partners

39 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

ol

Department of Computer Science

AT

Karlsruhe Institute of Technology

String IPC / memcpy

® Why?
® Trust
® Granularity

® Synchronous
(“atomic”) transfer

40 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

AIT

Karlsruhe Institute of Technology

Copy In — Copy Out

-
"
-
"y
u
]
"y
u
"y
u
"y
u
]
u

® Copy into kernel buffer

L Tl Tl Pl Tl Pl Tl Bl Tl Tl ool Bl Pl Tl Pl Tl Tl Tl

41 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

AT

Karlsruhe Institute of Technology

Copy In — Copy Out

® Copy into kernel buffer
® Switch spaces

42 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

AT

Karlsruhe Institute of Technology

Copy In — Copy Out

® Copy into kernel buffer
® Switch spaces
® Copy out of kernel buffer

W Costs for nwords
2x2n r/w operations

Example: 8 words / cache
3x n/8 cache lines

= 1x7/8 cache misses
(small n)

= 4xn/8 cache misses
(large n)

43 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

AT

Karlsruhe Institute of Technology

Temporary Mapping

44 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Tem porary Mappi ng VT ¥V T A VWL %ﬁsm!l

= Select dest area (2x4 MB)

45 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Karlsruhe Institute of Technology

Temporary Mapping ﬂ("‘

= Select dest area (2x4 MB)

= Map into source AS
(kernel)

46 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

AT

Karlsruhe Institute of Technology

Temporary Mapping

« Select dest area (2x4 MB)

= Map into source AS
(kernel)

= Copy data

47 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

AT

ttttttttttttttttttt f Technology

Temporary Mapping

Select dest area (2x4 MB)

Map into source AS
(kernel)

Copy data
Switch to dest space

48 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

® Copy 2 page directory entries

49

Temporary Mapping

(PDEs) from dest

® Addresses in temporary
mapping area are resolved
using dest’s page tables

31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017

AT

Karlsruhe Institute of Technology

Operating Systems Group

Department of Computer Science

Temporary Mapping

= Problems
« Multiple threads per AS

= Mappings might change while
message is copied

= How long
to keep
PTE?

= What
about
TLB?

AN

50 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group
Department of Computer Science

current AS

AT

Karlsruhe Institute of Technology

Temporary Mapping

® When switching threads
during IPC

AN

51 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

current AS

Department of Computer Science

Karlsruhe In:

stitute of Technology

Temporary Mapping

® When switching threads
during IPC

® Invalidate PDE
® Flush TLB

—
C

AN

52 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

current AS

Department of Computer Science

Temporary Mapping

® When returning to a thread
® Page Fault in Copy Area

® (Re)copy PDE from receiver

AN

53 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

current AS

Department of Computer Science

Temporary Mapping ﬂ(".

TM area PF:

= Page Fault if myPDE.TMarea = destPDE.destarea then
Resolution: tunnel to (partner) ;

access dest area ;

current AS

54 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Temporary Mapping

= SMP CPU1

55 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

56

Temporary Mapping

= SMP

= TM area per processor

31.05.2017

Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017

CPU2

CPU1

=~
&

Operating Systems Group

Department of Computer Science

Temporary Mapping

= SMP

« Page table per processor

/

J—

CPU2AS| [=

CPU1 AS C

57 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Cost Estimates for Copying n Words -\\J(IT

2 x n/8

n / (words per page)

~ 50

(assuming 8 words/cache line)

58 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

486 IPC Cost _\ﬂ(IT

Karlsruhe Institute of Technology

[us]

400 -

® Mach: Copy in/out

B [4: Temp. mapping 30 -

200 + L4 + cache flush
L4
100 -
. raw copy
0 |
0 2000 4000 6000
msg len
59 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

String IPC: Better than shared
memory?

® Trust?
® Grant items prevent unmapping

® Granularity?
® Sender decides memory layout

® Synchronous ("atomic”) transfer?
® Additional short IPC for signaling

® Tunneled page faults, copy area
multiplexing

® Violates minimality

No string IPC in 3 gen L4!

60 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Summary .\g(".

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

® IPC: Single most important operation in u-Kernels
=» Structure entire kernel for fast IPC!
@ Short IPC
® Payload in registers
B Context switch, just leave payload alone
® Avoid memory references
W SMP: Use L1 cache
@ String IPC
® Temp mapping = only one copy
B But: Pagefault tunneling, copy area multiplexing
® Only implemented for backward compatibility

61 31.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

