
KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

Jens Kehne | Marius Hillenbrand

Operating Systems Group, Department of Computer Science

www.kit.edu

Microkernel Construction
I.5 – IPC Implementation

Lecture Summer Term 2017

Wednesday 15:45-17:15 R 131, 50.34 (INFO)

Operating Systems Group

Department of Computer Science

2 31.05.2017

Microkernel Based Systems: The Challenge

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Hardware

L4 µ-kernel

Net Drv IDE Drv

TCP/IP

Exec Serv

SCSI Drv KBD Drv

EXT2 FS MM Serv

Proc Serv GFX Serv Swap Serv

sh gcc less emacs twm

Operating Systems Group

Department of Computer Science

3 31.05.2017

General IPC Algorithm

Validate parameters

Locate target thread

Return error if unavailable

Transfer message

Untyped items (short IPC)

Typed items (long IPC)

Schedule target thread

Switch address space as necessary

Wait for IPC (reply/next request)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

4 31.05.2017

IPC IMPLEMENTATION
Short IPC

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

5 31.05.2017

Short IPC (uniprocessor)

System-call pre (disable IRQs)

Identify dest thread and check

Same chief / no IPC redirection?

Ready-to-receive?

Analyze message and transfer

Short IPC  no action required

Switch to dest thread & address space

System-call post

The critical path

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

6 31.05.2017

Short IPC (uniprocessor)

“call”

System-call pre (disable IRQs)

Identify dest thread and check

Same chief / no IPC redirection?

Ready-to-receive?

Analyze message and transfer

Short IPC  no action required

Switch to dest thread & address space

System-call post

wait to receive running

running wait to receive

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

7 31.05.2017

Short IPC (uniprocessor)

“send” (eagerly)

System-call pre (disable IRQs)

Identify dest thread and check

Same chief / no IPC redirection?

Ready-to-receive?

Analyze message and transfer

Short IPC  no action required

Switch to dest thread & address space

System-call post

wait to receive running

running running

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

8 31.05.2017

Short IPC (uniprocessor)

“send” (lazily)

System-call pre (disable IRQs)

Identify dest thread and check

Same chief / no IPC redirection?

Ready-to-receive?

Analyze message and transfer

Short IPC  no action required

Switch to dest thread & address space

System-call post

wait to receive running

running running

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

9 31.05.2017

 Short IPC
Kernel Stacks

and TCBs

%ESP0

Kernel

memory

EAX

ECX

EDX

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

SS CS

DS ES

FS GS

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

10 31.05.2017

EAX

ECX

EDX

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

SS CS

DS ES

FS GS

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

 Short IPC

Operating Systems Group

Department of Computer Science

11 31.05.2017

EAX

ECX

EDX

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

SS CS

DS ES

FS GS

 Short IPC

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

12 31.05.2017

EAX

ECX

EDX

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

SS CS

DS ES

FS GS

 Short IPC

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

13 31.05.2017

EAX

ECX

EDX

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

SS CS

DS ES

FS GS

Short IPC

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

14 31.05.2017

EAX

ECX

EDX

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

SS CS

DS ES

FS GS

Short IPC

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

15 31.05.2017

IPC via sysenter/sysexit

Real register use

EAX: dest. TID  sender TID

ECX: timeouts  user IP (sysexit)

EDX: receive TID  user SP (sysexit)

EBX: (scratch)  MR1

EBP: (scratch)  MR2

ESI: MR0 [only unchanged register]

EDI: UTCB(sender)  UTCB(receiver)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

16 31.05.2017

Implementation Goal

Most frequent kernel op: Short IPC
Thousands of invocations per second

Performance is critical
Structure IPC for speed

Structure entire kernel to support fast IPC

What is affecting performance?
Cache line misses

TLB misses

Memory references

Pipe stalls and flushes

Instruction scheduling

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

17 31.05.2017

Fast Path

Optimize for common cases
Write in assembler

Non-critical paths written in C++
But still fast as possible

Avoid high-level language overhead
Function call state preservation

Incompatible code optimizations

We want every cycle possible!
At least sometimes …

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

18 31.05.2017

IPC Requirements for Fast Path

Untyped message

Single runnable thread after IPC

Must be valid call-like IPC

Send phase

Target is already waiting

Receive phase

Sender is not ready to couple, causing us to block

Switch threads, originator blocks

Infinite receive timeout

Send timeout can be ignored: receiver is waiting

Xfer timeouts do not apply for untyped messages

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

19 31.05.2017

Memory is “Forbidden”

Memory references are slow

Avoid in common case

E.g., (xfer) timeouts

Avoid in IPC

E.g., use lazy scheduling

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

20 31.05.2017

TLB Problem with Eager Scheduling

stack stack stack stack

virtual TCB
area

virtual

addresses

Walking/modifying

a linked list has

a TLB footprint.

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

21 31.05.2017

Lazy Scheduling

Do not update the scheduling lists

Blocked sender remains in ready list

Check real thread state when dispatching

May be unblocked before being scheduled
 avoids list manipulations

Unblocked receiver not added to ready list

Append to ready list at end of timeslice

May block before
 avoids list manipulations

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

22 31.05.2017

Memory is “Forbidden”

Memory references are slow

Avoid in common case

E.g., (xfer) timeouts

Avoid in IPC

E.g., use lazy scheduling

Microkernel should minimize artifacts

Cache pollution

TLB pollution

Memory bus

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

23 31.05.2017

Optimized Memory

stack

thread ID

cpu ID

&UTCB

thread state

TCB state,

grouped by

cache lines

Single TLB entry

Also, hard-wire TLB

entries for kernel code

and data.

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

24 31.05.2017

Avoid Table Lookups

thread no thread ID version

virtual TCB area

TCB = TCB_area +

 ((thread_no >> x) &

 TCB_size_mask)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

25 31.05.2017

Branch Elimination

slow = ~receiver->thread_state |

 ((timeouts ^ 0x400) & 0xffff) |

 sender->resources |

 receiver->resources;

if (0 != slow)

 enter_slow_path()

Common case:

0 (no resources in use)

Common case:

-1 (waiting)

 Reduces branch prediction foot print

 Avoids mispredictions, stalls, and flushes

 Slightly increases latency for slow path

Required (common) case:

0x0400

(infinite recv timeout)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

26 31.05.2017

TCB Resources

One bit per resource

Fast path checks entire word

If not 0, jump to resource
handlers 1 1

Debug registers

Copy area

Resources bitfield

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

27 31.05.2017

Slow and Fast

user mode

IPC wait via

slow path

user mode

IPC send via

fast path

IPC wait via

fast path

user mode

user mode

IPC send via

slow/fast path

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

28 31.05.2017

Problem?

Consistent State

Cooperative thread scheduling in kernel

TCB in consistent state for IPC wait

IPC restores user mode context

Avoids cycles for restoring kernel context

Fast path can activate slow path TCB

Can’t use fast path for kernel threads.

How often do kernel threads use IPC?

How to efficiently detect kernel threads?

  Use resource bit!

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

29 31.05.2017

Short IPC Performance (1)

IBM PowerPC 750,

500 MHz,

32 registers

up to 10

physical

registers

virtual register

copy loop

Many cycles
wasted on
pipeline flushes
for privileged
instructions.

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

30 31.05.2017

Short IPC Performance (2)

AMD Opteron

242,

1.6 GHz, 64 bit

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

31 31.05.2017

Short IPC: One fundamental problem…

Only works if sender and receiver are

on the same core!

…but nowadays, we have SMP

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

32 31.05.2017

Barrelfish

Baumann et al (ETH Zürich/Microsoft Research)

Assume many cores (100s!)

One kernel per core

ɂMultikernel OSɀ

Shared-nothing architecture

All communication explicit

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

33 31.05.2017

Core 1 Core 0

Cache line

IPC in Barrelfish

Use cache-coherent memory

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Sender Receiver

Poll on last byte of

cache line
Copy message to

cache line

Cache line

Cache coherence

protocol

Operating Systems Group

Department of Computer Science

34 31.05.2017

IPC in Barrelfish

Payload transferred via fastest possible channel

Ideally, message never touches memory

Performance (dual Opteron 2220, 2.8 GHz):

But: Polling wastes cycles

Barrelfish assumes dedicated core

False sharing can affect IPC performance

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Latency

(cycles)

Throughput

(msgs/kcycle)

Icache lines Dcache lines

URPC 450 3.42 9 8

L4 IPC 424 2.36 25 13

Operating Systems Group

Department of Computer Science

35 31.05.2017

IPC IMPLEMENTATION
Long IPC

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

36 31.05.2017

Long IPC (uniprocessor)

System-call pre (disable IRQs)

Identify dest thread and check

Same chief / no IPC redirection?

Ready-to-receive?

Analyze message and transfer

Long/map:

– transfer message –

Switch to dest thread & address space

System-call post

Preemptions possible!

(end of timeslice, device interrupt, …)

Pagefaults possible!

(in source and dest address space)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

37 31.05.2017

Long IPC (uniprocessor)

System-call pre (disable IRQs)

Identify dest thread and check

Same chief / no IPC redirection?

Ready-to-receive?

Analyze message and transfer

Long/map:

Lock both partners

– transfer message –

Unlock both partners
Switch to dest thread & address space

System-call post

Preemptions possible!

(end of timeslice, device interrupt, …)

Pagefaults possible!

(in source and dest address space)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

38 31.05.2017

Long IPC (uniprocessor)

System-call pre (disable IRQs)

Identify dest thread and check

Same chief / no IPC redirection?

Ready-to-receive?

Analyze message and transfer

Long/map:

Lock both partners

Enable IRQs

– transfer message –
Disable IRQs

Unlock both partners
Switch to dest thread & address space

System-call post

Preemptions possible!

(end of timeslice, device interrupt, …)

Pagefaults possible!

(in source and dest address space)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

39 31.05.2017

Long IPC (uniprocessor)

System-call pre (disable IRQs)

Identify dest thread and check

Same chief / no IPC redirection?

Ready-to-receive?

Analyze message and transfer

Long/map:

Lock both partners

Enable IRQs

– transfer message –

Disable IRQs

Unlock both partners
Switch to dest thread & address space

System-call post

wait running

running wait to receive

locked wait locked running

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

40 31.05.2017

String IPC / memcpy

Why?

Trust

Granularity

Synchronous
(ɀatomicɁ) transfer

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

41 31.05.2017

Copy In – Copy Out

Copy into kernel buffer

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

42 31.05.2017

Copy In – Copy Out

Copy into kernel buffer

Switch spaces

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

43 31.05.2017

Copy In – Copy Out

Copy into kernel buffer

Switch spaces

Copy out of kernel buffer

Costs for n words

 22n r/w operations

 Example: 8 words / cache

 3n/8 cache lines

 1n/8 cache misses

(small n)

 4n/8 cache misses

(large n)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

44 31.05.2017

Temporary Mapping

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

45 31.05.2017

Temporary Mapping

 Select dest area (2x4 MB)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

46 31.05.2017

Temporary Mapping

 Select dest area (2x4 MB)

 Map into source AS

(kernel)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

47 31.05.2017

Temporary Mapping

 Select dest area (2x4 MB)

 Map into source AS

(kernel)

 Copy data

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

48 31.05.2017

Temporary Mapping

 Select dest area (2x4 MB)

 Map into source AS

(kernel)

 Copy data

 Switch to dest space

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

49 31.05.2017

Temporary Mapping

Copy 2 page directory entries
(PDEs) from dest

Addresses in temporary
mapping area are resolved
using dest’s page tables

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

50 31.05.2017

Temporary Mapping

 Problems

 Multiple threads per AS

 Mappings might change while

message is copied

current AS

 How long

to keep

PTE?

 What

about

TLB?

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

51 31.05.2017

Temporary Mapping

When switching threads
during IPC

current AS

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

52 31.05.2017

Temporary Mapping

When switching threads
during IPC

Invalidate PDE

Flush TLB

current AS

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

53 31.05.2017

Temporary Mapping

When returning to a thread

Page Fault in Copy Area

(Re)copy PDE from receiver

current AS

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

54 31.05.2017

Temporary Mapping

TM area PF:

 if myPDE.TMarea = destPDE.destarea then

 tunnel to (partner) ;

 access dest area ;

 tunnel to (my)

 fi ;

 myPDE.TMarea := destPDE.destarea .

 Page Fault

Resolution:

current AS

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

55 31.05.2017

Temporary Mapping

 SMP

CPU1

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

56 31.05.2017

Temporary Mapping

 SMP

 TM area per processor

CPU1

CPU2

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

57 31.05.2017

Temporary Mapping

 SMP

 TM area per processor

 Page table per processor

CPU1
CPU2

CPU2 AS
CPU1 AS

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

58 31.05.2017

Cost Estimates for Copying n Words

(assuming 8 words/cache line)

R/W operations

Cache lines

Small n overhead cache misses

Large n cache misses

Overhead TLB misses

Startup instructions

Copy in - copy out Temporary mapping

2  2n 2n

3  n/8 2  n/8

n/8 0

4  n/8 2  n/8

2 n / (words per page)

0 ~ 50

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

59 31.05.2017

486 IPC Cost

Mach: Copy in/out

L4: Temp. mapping

0

100

200

300

400

0 2000 4000 6000

msg len

Mach

L4 + cache flush

L4

raw copy

[µs]

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

60 31.05.2017

String IPC: Better than shared

memory?

Trust?

Grant items prevent unmapping

Granularity?

Sender decides memory layout

Synchronous (ɀatomicɁ) transfer?
Additional short IPC for signaling

Tunneled page faults, copy area
multiplexing

Violates minimality

No string IPC in 3rd gen L4!

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

61 31.05.2017

Summary

IPC: Single most important operation in µ-Kernels

Structure entire kernel for fast IPC!

Short IPC

Payload in registers

Context switch, just leave payload alone

Avoid memory references

SMP: Use L1 cache

String IPC

Temp mapping  only one copy

But: Pagefault tunneling, copy area multiplexing

Only implemented for backward compatibility

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

